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Abstract: In many cases model integration treats models as software components only, 
ignoring the fluid relationship between models and reality, the evolving nature of models 
and their constant modification and re-calibration. As a result, with integrated models we 
find increased complexity, where changes that used to impact only relatively contained 
models of subsystems, now propagate throughout the whole integrated system. This makes 
it harder to keep the overall complexity under control and, in a way, defeats the purpose of 
modularity, when efficiency is supposed to be gained from independent development of 
modules. Treating models only as software in solving the integration challenge may give 
birth to 'integronsters' - constructs that are perfectly valid as software products but ugly and 
useless as models. We argue that one possible remedy is to learn to use data as modules 
and integrate them into the models. Then the data that are available for module calibration 
can serve as an intermediate linkage tool, sitting between modules and providing a module-
independent baseline dynamics, which is then incremented when scenarios are to be run. In 
this case it is not the model output that is directed into the next model input, but model 
output is presented as a variation around the baseline trajectory, and it is this variation that 
is then fed into the next module down the chain. The Chesapeake Bay Program suite of 
models is used to illustrate these problems and the possible solutions. 
 
Keywords: Modularity; Calibration; Integrated modeling; Chesapeake Bay; Module 
linking; Components 
 
 
1. INTRODUCTION 

 
As our impacts on the environment become more dramatic more interest is drawn to 
analysis of systems that span over several traditional scientific disciplines.  These systems 
are more complex and have to be described by models that may have various components 
characterized by different scales, resolutions, and developed under different assumptions 
and paradigms coming from different scientific traditions and backgrounds.  Integrated 
modeling is the method that is developing to bring together diverse types information, 
theories and data originating from scientific areas that are different not just because they 
study different objects and systems, but because they are doing that in very different ways, 
using different languages, assumptions, scales and techniques.  

There may be two ways of doing integrated modeling.  One is to build the model as a 
whole. Here the modeling team collects data and information from various scientific fields, 
processes it, and translates it into one formalism.  This is how some of the well known 
integrated models were built.  For example, the Club of Rome models resulted in the 
famous World 3 model by Meadows et al. (1979), which integrates information about 
agriculture and food production, industry, demographics, non-renewable resources, and 
pollution (http://www.whole-systems.org/world3.html).  Another example is the Global 
Unified Metamodel of the Biosphere (GUMBO) (Boumans et al., 2002, 
http://ecoinformatics.uvm.edu/projects/the-gumbo-model.html).  Here knowledge about 
geology, global climate, sociology, economics, atmospheric processes, and ecosystems is 
integrated in one model, designed to run various scenarios of global change.  A significant 
feature of these models is that they are developed and maintained by the same team as a 
whole.  
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The other approach to integrated modeling is to put together already built models.  For 
example, the modeling suite developed by the Chesapeake Bay Program (Cerco, 2000; 
Linker et al., 2000; Wang and Johnson, 2000) consists of three major parts:  
 The atmospheric transport model that produces atmospheric deposition predictions for 

nutrients and other constituents. The Airshed Model is based on the Community 
Multi-Scale Air Quality modeling system (CMAQ).  The latest CMAQ (2009) code 
runs on a 12 km fine grid in the Chesapeake region, with a 36 km grid used for the 
continental scale boundary conditions; 

 The watershed model, a highly-modified version of HSPF (Linker et al. 2000, 
Bicknell et al. 1996), that produces loadings that come from the land into the 
estuaries; 

 The estuary model, which is, itself, a combination of three linked models, a 
hydrodynamic model (Johnson et al.  1993), a eutrophication model (Cerco and Cole 
1993), and a sediment diagenesis model (DiToro 2001).  This Water Quality and 
Sediment Transport Model (WQSTM) is a three dimensional model of the tidal Bay 
comprised of 57,000 cells.  Currently it represents transport processes, eutrophication 
processes, and living resources such as submerged aquatic vegetation and benthos.   

 
This modeling system has been developed over the past 25 years and went through many 
phases.  The models are linked loosely, so that is there is no formal software mechanism 
involved. Mostly output from one model is sent as input into the other model as a data file. 
Yet still, the models work in concert and are used for decision making purposes as a suite.  
Here integration is performed at the level of existing models that are taken from different 
fields of science as modules.   

Since there are already numerous legacy models that have been carefully designed and 
tested in numerous applications by skilled researchers who are specialists in their 
corresponding fields of science, it makes perfect sense to try to reuse their products as 
building blocks for more complex systems.  We only need to make sure that they can be 
linked together in a meaningful way matching the variables, scales and resolutions. 
Currently there are several efforts to develop the standards and software tools that would 
provide for this kind of integration. For these purposes, models are merely treated as 
software components that are to be made to work together and talk to each other.  

The two approached to integrated modeling bear their own caveats and complications, 
which we consider below.  
 
2. INTEGRATED MODELS 
 
Building integrated models is a rather conventional approach as we can see from their 
history.  In most cases such models were built by integrating knowledge from different 
fields of science in the form of data, concepts, functions, approximations, etc.  The models 
themselves were built from scratch and little care was given to future reuse of the pieces 
that went into the model formulation.  The models were not designed for reuse or 
modification by others outside of the team.   

At some point it became clear that the model components could be reused or modified for 
future applications, and models started to be packaged as modeling systems.  The Modular 
Modeling System (MMS, Leavesley, et al., 1996) was one of the first attempts to make 
modules available for reuse.  Another example of modular modeling is the Library of 
Hydro-Ecological Models (LHEM, Voinov et al., 2004).  Here modules were developed as 
a mix of Stella and C++ code, together with the Spatial Modeling Environment (SME) used 
to stitch the modules together and take care of all the input and output.   

A more recent and sophisticated development is the Object Modeling System (OMS) by the 
US Department of Agriculture (David, et al., 2002;  Kralisch, et al., 2004;  Ahuja, et al., 
2005).  OMS requires rewriting modules in Java or C# to be then inserted into the system 
library.   

 
Another framework in this same category is the MIMOSA developed by CIRAD (Müller, 
2009, http://mimosa.sourceforge.net/).  It is a modeling and simulation platform, which can 
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support the whole model building process, starting from the stage of conceptual models and 
up to running and analyzing simulations. The specification uses ontologies and an 
extensible set of formalisms to present system dynamics, initialize and visualize the model. 
The simulation kernel is based on DEVS principles (Discrete Event System Specification; 
Zeigler, 1976). 

There are also proprietary platforms that bear promise in supporting integrated modeling 
such as Extend and Simile.  

Note that all these frameworks are not really designed to integrate legacy code as is, but 
rather they serve as tools for future model development, offering input, output and project 
support tools and common library standards, into which different modules are invited to be 
contributed.  The future of these frameworks will very much depend upon how wide their 
standards will be accepted within the modeling community and whether there will appear a 
critical mass of contributed models.  So far, unfortunately, there are very few examples of 
frameworks being used beyond their respective development teams.  Since each module 
has to be rewritten in the language of the framework, there is less worry about the 
consistency of models that these frameworks are producing.  All the scaling and linkage 
issues are expected to be solved when modules are tailored, adjusted and added to the 
framework libraries.   
 
3. INTEGRATING MODELS 
 
The alternative approach is to support model integration at the level of existing models, 
allowing these models to talk to each other directly.   

Some of the most advanced attempts of such model integration come from physics and 
engineering.  For example the Common Component Architecture (CCA) is developed by 
the Department of Energy and Lawrence Livermore National Lab teams (Bernholdt, 2004). 
The design places minimal requirements on components and facilitates the integration of 
existing legacy code into the CCA environment by means of the Babel (2004) language 
interoperability tool, which currently supports C, C++, Fortran 77, Fortran 90/95, and 
Python. The CCA is being applied in a variety of disciplines, including combustion 
research, global climate simulation, and computational chemistry.  At this time CCA is 
adopted as the integration engine by the Community Surface Dynamics Modeling System 
(CSDMS; Peckham, 2010).  

The US Environmental Protection Agency (EPA) has been developing the FRAMES 
(2009, 2009a) (Framework for Risk Analysis in Multi-media Environmental Systems) 
system to manage the execution and data flow among the science modules.   3MRA (2009) 
(Multi-media, Multi-pathway, Multi-receptor Risk Analysis) (Babendreier and Castleton, 
2005) is a collection of 17 modules that describe the release, fate and transport, exposure, 
and risk associated with various contaminants.  FRAMES was developed as the framework 
that would allow these modules to communicate with each other. 

The Open Modeling Interface and Environment (OpenMI, 2009) developed by a 
consortium of European universities and private companies, is a standard for model linkage 
in the water domain (Moore, et al., 2005). The OpenMI standard defines an interface that 
allows time-dependent models to exchange data at runtime.  When the standard is 
implemented, existing models can be run in parallel and share information at each time-
step. 

All these systems are primarily about software issues and the major concern is how to link 
models as software components.  There always seems to be a 
software solution that we can find, and the promise is that we will be 
able to make models work together and exchange information at run 
time.  Actually, models are more than just software and there are 
issues that may not be easy to deal with at the software level.  This 
takes root from the long lasting discussion about modeling as science 
or art.  Let me try to explain what I mean by using some metaphors.  
 
3.1 “Ugly” constructs 
 

 
 

Fig. 1A. Disney’s 
Ariel 
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There is certainly some beauty in the most well-known models from physics.  Agren and 
Bosatta (1990) have called for ecologists to use similar esthetic criteria to guide them 
towards useful theories in their domains.  They asked: “Are we like construction engineers 
who mainly care about getting the house built, or like artists who try to capture the essence 
of the house in our paintings?” (p.213).  I would argue that similar principles should apply 
to model coupling.  In Fig.1A we can see an example of a somewhat esthetically pleasing 
effort in module integration.  Coupling modules in a different way can produce results that 
are way less attractive for an average eye (Fig.1B).  It may be hard to explain why one 
coupling is nicer than the other one: technically the linkage process in both cases has 
followed quite similar rules.  By following 
only technical principles we may be giving 
birth to 'integronsters' - constructs that are 
perfectly valid as software products but 
ugly and useless as models. 
 
3.2  Skewed geometry 
 
Geometry and spatial resolution of a 
system is very important.  When building a 
model we tend to imply much about the spatial representation that we use.  In many cases 
the system boundaries are not quite carefully spelled out and the spatial resolution and 
system topology are assumed as a given.  This works nicely as long as the modelers 
themselves are the ones who use the model.  If the model is packaged as a module and 
offered for reuse and recombination, all these hidden and unsaid features become crucial.  
We can imagine a geometrically consistent system as in Fig.2A, combined with another 
geometrically consistent system as in Fig. 2B.  The result of this integration shown in Fig. 
2C makes little sense in our normal 
Euclidian space. Even while the 
connection was made in a 
reasonable way: a lower leftmost 
column was connected to the upper 
leftmost column and so on. The 
overall orientation of the object 
may have not been part of the 
module description.  The result, 
while technically correct, becomes 
meaningless.  
 
3.3  Mismatched scales 
 
In environmental sciences we find 
various combinations of processes 
and systems, and each one is 
characterized by its own specific 
scale and resolution in space, time and complexity.  While linking in time and space is 
mostly a technical problem and can be resolved by appropriate software and 
documentation, it is less clear how to communicate information from one complexity level 
to another, how to estimate system responses across scales or levels.  The problem is that 
each model is built for its particular goals and these goals and scales are also specific for 
the field of application and discipline.  For example, economic models mostly operate in 
terms of global equilibria, which may remain unchanged for months or even years.  They 
also deal with variables that may be averaged across regional scales.  It would be 
inappropriate to blame the economists 
that their models do not get even close 
to the resolution and complexity of, 
say, hydrologic models.  If we need to 
make these two types of models work 
in concert as components, we find that 
the complexity of these components is 
in different dimensions, which would 

 
Fig. 1B. René Magritte. “Collective Invention” 1934 

 
Fig.2. M.C. Escher’s Belvedere, 1958, made of two 

geometrically consistent components twisted in space when 
put together. 

Fig. 3. Bull in a china shop 
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be hard to compare.  In a way one model component in this case can be compared to a bull 
in a china shop: it simply does not belong there.  Yet for a transdisciplinary system 
analysis, we need to integrate the two modules together.   

There have been many attempts to couple models from different levels of organization 
ranging, for example, from leaf to ecosystem (Anderson et al., 2003).  One approach 
connecting such models is to extrapolate or average the results obtained from a detailed 
level to a higher level (Ewert et al., 2006).  In other cases we may want to focus on the 
critical thresholds, when the more detailed model will be analyzed beforehand for 
conditions that can be like a red flag for the rest of the system.  For example, the hydrology 
model may be needed only to generate the extreme, flood events, which are important for 
the economy model.  By estimating various important relationships from model simulations 
at lower levels, and then using the derived parameters as inputs for higher-level models, we 
can reduce the computation time. However, we may be missing some complex interactions 
and feedback mechanisms (Ewert et al., 2006). 
 
3.4  Confusion of tongues 
 
Different scientific disciplines speak 
different languages.  This makes it only 
harder to integrate the models that they 
produced.  There is much hope that the 
ontological approach (e.g. Hřebíček, Kisza, 
2008; Rizzoli, et al., 2008; Athanasiadis, et 
al., 2008; Janssen et al., 2008; 
http://www.apesimulator.org/OntologyBrow
ser.aspx) can help to find a common way for 
communicating information.  But ontologies 
emanating from different scientific fields are 
likely to be different and additional effort 
will be needed to synchronize them.  
Otherwise we are still likely to experience 
the problems described in the story about the 
Confusion of Tongues (Fig.4).  This 
transdisciplinary synchronization of 
ontologies is hard to automate and 
standardize, especially when we are trying to 
use legacy models.  
 
3.5  Do it together 
Most of the above listed problems can be resolved if the modeling process is conducted as 
a community effort (Voinov et al., 2010).  A community for model building, such as the 
CIEM (Community for Integrated Environmental Modeling - 
http://groups.google.com/group/commiem), which is based on open source and follows 
some principles similar to the ones developed by OGC (Dibner, Arctur, 2008), is certainly 
a very promising endeavor.      

According to wiki-answers it is Geoffrey Haley who said that “When a collection of 
brilliant minds, hearts and talents come together ... expect a masterpiece”.  This may be true 
but it is still hard to imagine how a painting like Mona Lisa could be painted by Leonardo 
working together with Michelangelo and Raphael in a community effort.  More likely they 
would have produced some kind of a modular product as in Fig.5.  Do we really expect 
masterpieces from community efforts or rather they should be focusing on routine work, 
serving the needs and goals of particular applications?  

Fig. 4. Gustave Doré's “Confusion of Tongues”. 
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We see that model 
integration and 
integrated modeling 
may need efforts that go 
beyond software 
development and 
require research in 
community building, 
social networking, 
semantics and modeling 
methodology.   
 
4. MODEL 
INTEGRATION AND 
DATA 
 
Another important issue that distinguishes models from mere software is how they relate to 
data.  This is especially evident for environmental and socio-economic applications, where 
in fact models are rarely based on sound theory and mostly represent empirical 
generalizations.  Even in hydrology, where there is a solid theoretical background, the 
calibration phase turns out to be essential.  No matter how undesirable calibration is, 
especially when we need to run scenarios for global change and explore the domains that 
are not well covered by data, using models without calibration is risky, to say the least.  
Jetten et al. (1999) compared the performance of some 14 catchment models and found that 
uncalibrated use of models is not advisable, especially for small and medium scale 
catchments.  Similar conclusions were drawn by Bormann et al. (2007): when calculating 
scenarios that were out of the calibration domain, different models produced quite different 
results.   

The promise of module integration has been most prevalent for process-based models. The 
idea is that by representing the processes correctly in a model, we can then couple models 
of these processes together and produce simulations of more complex systems, where 
processes are linked and exchange material and information.  This becomes less attractive, 
if we need to deal with empirical models, which are always dependent on data.  The 
problem is that in environmental sciences there are hardly any really process-based models.   

What is a truly process-based model as against an empirical, regression one? In any 
process-based model we actually utilize certain empirical generalizations, rather than true 
process description. For example, there is hardly an adequate detailed biophysical 
molecular description of the photosynthesis process to be found among the models of 
vegetation growth, instead some variations of Michaelis-Menten kinetics are applied, 
which are already empirical generalizations of the process. Nevertheless these models 
claim to be process-based. As we go to larger systems, such as landscapes, we will need to 
employ even more generalized formalizations (Voinov, et al., 1998).  We tend to forget that 
what we assume to be descriptions of processes are in fact only empirical generalizations of 
these processes.  For almost all so-called process-based models, they actually describe 
processes only at a certain level of abstraction, and become empirical beyond that.  This is 
probably why most of the process-based models still need to be recalibrated when applied 
to new areas and study cases.  The more different the environmental conditions – the more 
recalibration needed. 

Silberstein (2006) claims that “modellers who focus on their model without continual 
reference to real data are not really scientists but artists. They have their place, and indeed 
their ideas may well turn out to be useful, but their activities are not science if they are not 
base on observations”.  But if calibration is still an essential task when integrating models, 
the promise of building new models of complex systems from modules, like from Lego 
blocks, becomes less feasible.  If we still need to do calibration, we need to remember that 
calibration of complex models is even more complex.  As more components are brought 
together, the calibration of the whole model becomes only more difficult.   

An integrated model is made out of two or more relatively independent components.  Each 
of these components can operate on its own and in many cases has been developed 

 
Fig.5. Mona Lisa as a product of community efforts.  

(http://www.walyou.com/blog/2010/04/27/18-greatest-mona-lisa-painting-remakes/) 
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independently by separate groups of researchers.  The promise of integration in this case is 
that legacy code and models can be reused to analyze more complex systems, while 
analysis is simplified since the overall system can be studied and modeled in portions.  
Suppose we have model A for one sub-system and model B - for another.  If a system is a 
composite of these two sub-systems then instead of building a whole new model C to 
present it, it should be possible to use an integration of the two existing models and model 
the system with an AB model, where the two components A and B exchange information 
as they run. For simplicity let us assume that there is only a one-way flow of information 
from A to B.  

What should be the calibration process in this case? If A and B existed before, they were 
most likely calibrated previously with observation data.  If not - still it should be much 
easier to calibrate smaller and simpler components, therefore we may assume that A and B 
are calibrated separately.  However, obviously, after integrating A and B we should not 
expect that the resulting output from the AB model will match data as well as output from 
B.  Note that for our system it is the output from B that matters, since B generates output 
for the integrated model AB.   

The reason that AB will generate somewhat different results than the calibrated standalone 
B model is that now the forcings for B come from the calibrated model A, instead of being 
taken from data. No matter how well A is calibrated, its output is likely to deviate from the 
data, and will steer AB away from what B previously was generating.  The results can be 
still improved by some further calibration of B as part of the integrated system.  In this case 
this will look like a calibration of the AB model as a whole. This will also likely include 
some refinement of overall model performance by model B calibration, in fact, 
compensating for some deficiencies in the calibration of model A.  Moreover, we may be 
even tempted to further tweak some of the parameters in A to get a better match.  This is 
exactly what is done in integrated models: they need adjustment and re-calibration after the 
components are put together.  However by doing this we lose much of the advantages of 
the modular architecture in the integrated AB model.  We now need to deal with the 
calibration of the full model, and whenever any changes are made to any of the 
components, the other components need to undergo new calibration as well. 

For example, for the Chesapeake Bay decisions are mostly based on predictions for the 
future state of the system in terms of such indicators as the area of hypoxia, or suitability of 
habitat for living resources, while most of the management and mitigation is carried out for 
the watershed, where the nutrient and solids loads are generated.  Therefore the integration 
of the three models is crucial.  But whenever the watershed model gets updated, it produces 
different output.  As a result, every time the watershed model is changed, the estuary model 
needs to be re-calibrated.  In theory, as the watershed model moves from one phase to the 
next one, its output is supposed to become ‘better’ in terms of matching the data, the model 
is supposed to be better calibrated. Sometimes this is indeed the case, in other cases the 
upgrades are driven by the need to include new features important for management, or by 
the need to change the resolution in the model.  The output in this case becomes ‘different’ 
but not necessarily ‘better’ in terms of a better fit to data.  Again and again the estuary 
model needs to undergo tedious re-calibration, which is entirely caused by developments 
that are external to it, and do not necessarily have anything to do with improvements of the 
estuary model itself. Much effort and time is spent with the only benefit of keeping the 
components working together.   

Voinov and Cerco (2010) point out that the fact that two components are integrated into 
one model, does not have to make the available calibration data no longer relevant.  When 
the downstream model, the estuary model in our example, was first calibrated, it was forced 
with observed loads, and there is no reason to think that the output from the up-stream 
model, the watershed model, is more accurate than these observations.  If the data was still 
embedded in the integration process, then there would be no need for model re-calibration 
every time modifications are made ‘up the modeling stream’.  Indeed, when new and 
‘better’ modules are developed, the data are still invariable, and there is no reason why the 
same data set that was used for calibration of an up-stream model A cannot be used as 
forcing functions for the ‘down-stream’ model B.   
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When integrating models, the data can stand between the output of the upstream model and 
the input of the downstream model (Fig.6). When the first model is modified, the second 
model does not need to be re-calibrated, because still the first model is expected to 
represent the same data as before, and it is that data that feeds into the second model.  In a 
way we employ a version of data assimilation, when data become part of the overall 
integrated modeling structure.  Certainly, in many cases the output of the up-stream 
component is much more data-rich than what the observed data sets offer.  For example, in 
case of the Bay model, the watershed model generates inputs for every single tributary, 
while data sets are available only for some.  Yet still that is not a reason to exclude the 
available observations and replace them entirely by ‘artificial’ data. Wherever and 
whenever observed data are available they should be used and should have precedence over 
model generated data.  What we suggest is a data-model fusion when integrating 
components.   

But how do the two 
model components run 
in concert, if the data 
component sitting 
between them is 
invariant to the changes 
in the forcing functions 
that drive the upstream 
components? After all, 
most models are built to 
run scenarios, where 
certain parameters and 
forcing functions are 
modified to answer the 
‘what if’ questions or 
make predictions for 
the future.  How do we treat scenarios that produce results that are not available as part of 
the existing data sets?  

The idea is to describe a scenario as relative to the calibrated base run, as a perturbation of 
this base run, which is then fed into the next component as an increment to the same data 
set that was used to calibrate that downstream component before (Voinov and Cerco, 
2010).  At any time step, the upstream component output is corrected based on the data set 
available, before it is fed into the next component as input. What is most important, we no 
longer need to undergo the tiresome re-calibration process, when changing the components 
‘above’. Only the scenario runs will need to be rerun, since, obviously, a modified 
upstream component will likely produce different set of perturbations, which will change 
the performance of the components ‘below’.  

Data, in fact, should be treated as an intrinsic part of any model, or even as models on their 
own.  Data modules will exist along with model modules and when designing integrated 
systems we will choose which modules to use in which cases.  This may simplify the 
calibration problem for cascade linking, when output from one module is fed further down 
the chain into the next module.  Here data may serve as a constant ‘reality check’ between 
modules.    

The situation becomes more complicated when we have circular linkage and modules 
exchange information in both directions.  It is not clear where to place data in this case, and 
how the whole calibration exercise should be performed.  I would argue that in such cases 
integration is becoming the less feasible the more empirical the modules are.  CCA, DEVS 
and other software linking technologies are more suitable for linking modules that are 
process-based and less dependent on data and calibration.  For more empirical models it 
should be safer to build integrated models as a whole, using some of the integrated 
frameworks described at the beginning of this paper.  After all with empirical models it is 
always hard to draw the line for the best level of complexity.  A simpler model can perform 
much better than a complicated one, and many processes and parameters that come with 
pre-existing components may turn out to be unimportant.  

 

 
Fig.6. Module A linked to Module B “through data”.  Some of the output from 
Module A, for which Data exists, is not sent as Input to the linked Module B, 
but instead, it is used to modify the calibration Data set, which is then fed into 
Module B.   



A.Voinov. / 'Integronsters' and the special role of data 

5. CONCLUSIONS 
 
A lot has changed during the last 20 years since Agren and Bosatta’s (1990) plea for more 
artistry and less construction-engineering or more science and less modelling in ecology.  
They were pointing out that it is not trivial to synthesize a larger system from pieces and 
then infer the system properties from the properties of the parts.  With the modern module 
coupling tools it is getting only easier to put such larger systems together, but it is still 
questionable whether our products will be meaningful and useful.   

While Silberstein (2006) insists that more data are needed and that models without data are 
not science, Andersen (2008) claims that there is already a deluge of data that can change 
the way science is done.  Google and other similar efforts produce evidence that by 
analyzing huge arrays of data only, we can actually build new theories based only on 
correlation, ignoring causation.  The new analytical tools that are going to be developed for 
petabyte computing in the “clouds” will require entirely different approaches to integration 
than the types of model integration that we were considering so far.   

There are a lot of gains that can be made if instead of mechanistically plugging modules 
together we take into account the specific goals and features of the system, and approach 
the problem with some creativity.  The considerations presented here by no means devalue 
the importance and need for module linking software tools, component interfaces and 
specifications. We are only reminding that models are more than just pieces of software 
and they require more to make them work together efficiently.  For example, incorporating 
data sets in appropriate places within the integrated modeling system can help to keep 
components somewhat separate to avoid the propagation of perturbations and changes 
down the stream from one model to another. This can substantially increase the efficiency 
and accuracy of the integration process. We need data sets to be recognized as components 
on the same level as models.  Such data components can then enter the integrated 
frameworks at various places, not only at the top, as input to drive the whole integrated 
model, and at the bottom, to compare with the output and to calibrate the model.  Data 
components can be also used between components to test, adjust, and correct the data flows 
inside the integrated model.  This will help to keep components more independent, and 
reduce the overall complexity of the calibration task for the whole integrated model.  
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